
Description of the solutions for the problems
used at SWERC 2012

Judges and Local Problem Setters

Departament de Sistemes Informàtics i Computació
Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

November 27, 2012

Contents

Beehives

Bits

LCMP Sum Pack

RNA

Old School Days

Sentry Robots

Water Spiders

Shares

The Moon of Valencia

Count Down

SWERC 2012 November 27, 2012 2

External problem setters:

I Shahriar Manzoor, Southeast University, Bangladesh

I Rujia Liu - Eryiju, China

I Derek Kisman - Translattice, USA

I Sohel Hafiz - University of Texas at San Antonio, USA

I Jane Alam Jan - Google, USA

I Mohammad Mahmudur Rahman - Mukto Software Ltd,
Bangladesh

I Md. Mahbubul Hasan - BUET, Bangladesh

I Md. Towhidul Islam Talukder - SDSL, Bangladesh

SWERC 2012 November 27, 2012 3

Local problem setters, also judges:

I Paco Álvaro, UPV, Spain

I Carlos Martínez, UPV, Spain

I Joan Pastor, UPV, Spain

I Ximo Planells, UPV, Spain

I Mario Rodriguez, UPV, Spain

I Emilio Vivancos, UPV, Spain

I Jon Ander Gómez, UPV, Spain

SWERC 2012 November 27, 2012 4

Solutions accepted until freeze

I Problem A: 1 team. ENS Ulm 1
I Problem B: 36 teams. NULL Team
I Problem C: 9 teams. UPC-2
I Problem D: 1 team. UTC
I Problem E: -
I Problem F: 5 teams. I’m stuck in the ACM database.
I Problem G: 8 teams. UPC-2
I Problem H: -
I Problem I: -
I Problem J: 5 teams. Enter

SWERC 2012 November 27, 2012 5

Beehives

I Problem: Calculate the shortest cycle of a un-directed
graph.

I Solution: Start a BFS from each node stopping when you
find an already-visited node.

I See also: http://en.wikipedia.org/wiki/Girth_(graph_theory)

SWERC 2012 November 27, 2012 6

Bits

Target
0 1

Source
0 A B
1 C A
? D E

I Swap B 0’s and C 1’s.

I Convert B 0’s into 1’s

I Check if it is possible generate enough 0’s. (E < C).

I Change C 1’s into ?’s and then into 0’s.

I Convert E, F ?’s into 0’s and 1’s respectively.

SWERC 2012 November 27, 2012 7

LCMP Sum Pack
∑

1≤p≤q≤N
lcm(p,q)=N

p + q

I We can use prime factorization of the number to determine the
sum.

I Let us define:

I SOD(X) to be the sum of divisors of X

I NOD(X) to be the number of divisors of X .

I These functions can easily be calculated from the prime
factorization of N.

SWERC 2012 November 27, 2012 8

LCMP Sum Pack

I Now we can fix some of prime factors to be in their highest power
and calculate the sum of all pairs associated with all numbers
having exactly those factors with their power maximized.

I Let these factors are Qi and the other factors are Ri .

I So, for these pairs one number will have exactly the factors Qis
to have their power maximized while the other number of the pair
will have at least Ris to have their power maximized.

I Of course, P = Q ∪ R, P is the set of divisors of N.

I We can derive the following expression to calculate this:

M∑
i=0

Qi × NOD(Qi)× SOD(Ri⊕M)

where M is 2|F | − 1, F is the set of prime factors.

SWERC 2012 November 27, 2012 9

LCMP Sum Pack

12 = 22 ∗ 31

i ibinary NOD(Qi) SOD(Qi) Qi

0 0000 1 1 1
1 0001 3 3 4
2 0010 2 1 3
3 0011 6 3 12

M∑
i=0

NOD(Qi)× SOD(Ri⊕M)×Qi

where M is 2|F | − 1, F is the set of prime factors.

∑
1≤p≤q≤12
lcm(p,q)=12

p + q = 3 + 12 + 18 + 72 = 117

SWERC 2012 November 27, 2012 10

RNA
I This problem can be solved by using Dynamic

Programming with a 3 dimension table.

I Performs initial alignment for extreme blocks and erases
the complementaries.

I Employs a recursive process for calculating pairings in a
substring rnas . . . rnae:

I When rnas and rnae makes an AU pair, calculate
recursively for (rnas+1, rnae−1).

I In other case:
I From i = rnas+1 till i = rnae, if rnas pairs rnai , calculate

recursively for (rnas+1,rnai−1) and for (rnai+1,rnae), applying
CG pairing restriction when necessary

I Calculate recursively for (rnas+1,rnae) (start base
unmatched)

I Return the highest result

SWERC 2012 November 27, 2012 11

Old School Days
The trivial solution to this problem is:

SUM=0;
for(int i=0; i < N; i++)

for(int j=i+1; j < N; j++)
for(int k=j+1; k < N; k++)

for(int l=k+1; l < N; l++)
if (convex) {

SUM += area(i, j, k, l);
} else {

SUM += area(i, j, k, l);
SUM += area(i, k, j, l);
SUM += area(i, j, l, k);

}

T (n) ∈ O(n4)

SWERC 2012 November 27, 2012 12

Old School Days

SWERC 2012 November 27, 2012 13

Old School Days

SWERC 2012 November 27, 2012 14

Old School Days

SWERC 2012 November 27, 2012 15

Old School Days

SWERC 2012 November 27, 2012 16

Old School Days

SWERC 2012 November 27, 2012 17

Old School Days

SWERC 2012 November 27, 2012 18

Old School Days

SWERC 2012 November 27, 2012 19

Old School Days

SWERC 2012 November 27, 2012 20

Old School Days

SWERC 2012 November 27, 2012 21

Old School Days

SWERC 2012 November 27, 2012 22

Sentry Robots

I Goal: Cover all the * using vertical or horizontal lines taking
into account obstacles #

I Solution without obstacles: Maximum matching using a
flow network.

* * * .
* . . .
* . . .
* * * *

(0,0), (0,1), (0,2),
(1,0),
(2,0),
(3,0), (3,1), (3,2), (3,3)

SWERC 2012 November 27, 2012 23

Sentry Robots

Maximum matching between rows and columns.

SWERC 2012 November 27, 2012 24

Sentry Robots

Solution with obstacles: Transform the input to a new grid
where obstacle don’t matter.

. * * . .

. * # * .

. # * . .

. . * . .

. * . *

. *

. # . .

. *

. . #

. * .

. * .
Solve this new grid using maximum matching.

SWERC 2012 November 27, 2012 25

Sentry Robots

Equivalence between grids:

. . * . # . . *
. . *
. . . . # . . .
. *

*
#
*

* . .
. # .
. . *

Transform the grid first by rows and then by columns.

SWERC 2012 November 27, 2012 26

Sentry Robots
Probabilistic solution. I’m sorry didn’t work.

SWERC 2012 November 27, 2012 27

Water Spiders

I D is the distance in metres from calm waters to waterfall.
P is the spider’s jumping power.

I If a sequence doesn’t match a recurrence relation of second
order, then the sequence is complete in the input.
D + 1 numbers will appear. In this case the problem is trivial.

I If a sequence matches a recurrence relation of second order,
Sn = a · Sn−1 + b · Sn−2, then the sequence can be represented
by a minimum of four numbers. S0,S1,S2,S3 , then obtaining a
and b is also trivial.

S3 = a · S2 + b · S1

S2 = a · S1 + b · S0

I The solution is D − i , where Si ≤ P and Si+1 > P

SWERC 2012 November 27, 2012 28

Shares

I The greedy solution is not optimal.
I Sort and take the packs according to the ratio benefit/cost

I The complete solution is so time consuming for the given
limit time (5 secs).

I This problem is solved efficiently when it is considered as
the discrete Knapsack problem.

I Considerations to solve this problem:
I Calculate the profit obtained by each pack p ∈ P.

I Delete those packs p′ ∈ P that have a negative profit or a
cost greater than the available capital C. They cannot be
part of the optimal solution.

SWERC 2012 November 27, 2012 29

Shares

I How to solve this problem:
I Dynamic Programming:

I Computational cost: O(C × P)

I Efficient use of memory→ Memory cost: O(2× C)

I Greatest Common Divisor (gcd):
I Not all the prices between 0 and C must be checked.

I Only those prices c ∈ [0,C] that are multiple of the gcd of
the cost of packs.

I Reduce both computational and memory cost by the
gcd(cost of packs).

I Computational cost: O
(

C
gcd(cost of packs) × P

)
I Memory cost: O

(
2× C

gcd(cost of packs)

)

SWERC 2012 November 27, 2012 30

The Moon of Valencia

I This problem can be efficiently solved by using the A∗ algorithm.

I The heuristic for sorting the hypotheses in the priority queue is

|S∗ − f ()|

where S∗ represents the goal grade of satisfaction on arrival,

f () = g()− h() is the heuristic to be optimized,

g() is the grade of satisfaction of the current hypothesis, which
can include the satisfaction of current node or not.

h() is the time required to reach the goal from the current node
using Floyd-Warshall.

SWERC 2012 November 27, 2012 31

Count Down
I This problem can be solved by using a Breadth or depth

first search.
I For each available set of numbers, all possible

combinations of addition, substraction with non-negative
result, multiplication, and exact integer division are tested.

I Each new operation generates a new node in the queue
with the contents:

I Available numbers.
I Last operation performed.
I Previous node (that with the previous operation).

I When result is achieved, nodes are retrieved from current
node and operation sequence is obtained.

I The same process applies for non-exact results, but after
exhaustive search the node with the closest approximation
is selected.

SWERC 2012 November 27, 2012 32

	Contents
	Beehives
	Bits
	LCMP Sum Pack
	RNA
	Old School Days
	Sentry Robots
	Water Spiders
	Shares
	The Moon of Valencia
	Count Down

